Functional Differences between Mitochondrial Haplogroup T and Haplogroup H in HEK293 Cybrid Cells
نویسندگان
چکیده
BACKGROUND Epidemiological case-control studies have revealed associations between mitochondrial haplogroups and the onset and/or progression of various multifactorial diseases. For instance, mitochondrial haplogroup T was previously shown to be associated with vascular diseases, including coronary artery disease and diabetic retinopathy. In contrast, haplogroup H, the most frequent haplogroup in Europe, is often found to be more prevalent in healthy control subjects than in patient study groups. However, justifications for the assumption that haplogroups are functionally distinct are rare. Therefore, we attempted to compare differences in mitochondrial function between haplogroup H and T cybrids. METHODOLOGY/PRINCIPAL FINDINGS Mitochondrial haplogroup H and T cybrids were generated by fusion of HEK293 cells devoid of mitochondrial DNA with isolated thrombocytes of individuals with the respective haplogroups. These cybrid cells were analyzed for oxidative phosphorylation (OXPHOS) enzyme activities, mitochondrial DNA (mtDNA) copy number, growth rate and susceptibility to reactive oxygen species (ROS). We observed that haplogroup T cybrids have higher survival rate when challenged with hydrogen peroxide, indicating a higher capability to cope with oxidative stress. CONCLUSIONS/SIGNIFICANCE The results of this study show that functional differences exist between HEK293 cybrid cells which differ in mitochondrial genomic background.
منابع مشابه
Associations of Mitochondrial Haplogroups B4 and E with Biliary Atresia and Differential Susceptibility to Hydrophobic Bile Acid
Mitochondrial dysfunction has been implicated in the pathogenesis of biliary atresia (BA). This study aimed to determine whether a specific mitochondrial DNA haplogroup is implicated in the pathogenesis and prognosis of BA. We determined 40 mitochondrial single nucleotide polymorphisms in 15 major mitochondrial haplogroups by the use of 24-plex PCR and fluorescent beads combined with sequence-s...
متن کاملGeneration and Bioenergetic Profiles of Cybrids with East Asian mtDNA Haplogroups
Human mitochondrial DNA (mtDNA) variants and haplogroups may contribute to susceptibility to various diseases and pathological conditions, but the underlying mechanisms are not well understood. To address this issue, we established a cytoplasmic hybrid (cybrid) system to investigate the role of mtDNA haplogroups in human disease; specifically, we examined the effects of East Asian mtDNA genetic...
متن کاملMitochondrial Haplogroups Modify the Risk of Developing Hypertrophic Cardiomyopathy in a Danish Population
Hypertrophic cardiomyopathy (HCM) is a genetic disorder caused by mutations in genes coding for proteins involved in sarcomere function. The disease is associated with mitochondrial dysfunction. Evolutionarily developed variation in mitochondrial DNA (mtDNA), defining mtDNA haplogroups and haplogroup clusters, is associated with functional differences in mitochondrial function and susceptibilit...
متن کاملMitochondrial DNA Variants Mediate Energy Production and Expression Levels for CFH, C3 and EFEMP1 Genes: Implications for Age-Related Macular Degeneration
BACKGROUND Mitochondrial dysfunction is associated with the development and progression of age-related macular degeneration (AMD). Recent studies using populations from the United States and Australia have demonstrated that AMD is associated with mitochondrial (mt) DNA haplogroups (as defined by combinations of mtDNA polymorphisms) that represent Northern European Caucasians. The aim of this st...
متن کاملDecreased Reactive Oxygen Species Production in Cells with Mitochondrial Haplogroups Associated with Longevity
Mitochondrial DNA (mtDNA) is highly polymorphic, and its variations in humans may contribute to individual differences in function. Zhang and colleagues found a strikingly higher frequency of a C150T transition in the D-loop of mtDNA from centenarians and twins of an Italian population, and also demonstrated that this base substitution causes a remodeling of the mtDNA 151 replication origin in ...
متن کامل